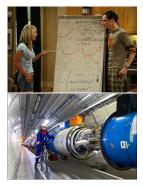
Supporting Experimental Science in Distributed Systems Research

Lucas Nussbaum EPI ALGORILLE



Validation in (Computer) Science

- Two classical approaches for validation:
 - Formal: equations, proofs, etc.
 - Experimental, on a scientific instrument
- Often a mix of both:
 - In Physics
 - In Computer Science

Validation in (Computer) Science

- Two classical approaches for validation:
 - Formal: equations, proofs, etc.
 - Experimental, on a scientific instrument
- Often a mix of both:
 - In Physics
 - In Computer Science

- Very little formal validation in distributed systems research
 - Counter-examples:
 - ★ Worst-case analysis of allocation/scheduling heuristics
 - Properties of algorithms (e.g. deadlock-free)
 - Our scientific objects are often intractable theoretically: too complex, dynamic, heterogeneous, large

(Poor) state of experimentation in CS

- 1994: survey of 400 papers¹
 - among published CS articles in ACM journals, 40%-50% of those that require an experimental validation had none
- 1998: survey of 612 papers²
 - too many papers have no experimental validation at all
 - too many papers use an informal (assertion) form of validation
- 2009 update: situation is improving³

¹Paul Lukowicz et al. "Experimental Evaluation in Computer Science: A Quantitative Study". In: *Journal of Systems and Software* 28 (1994), pages 9–18.

²M.V. Zelkowitz and D.R. Wallace. "Experimental models for validating technology". In: *Computer* 31.5 (1998), pages 23 –31.

³Marvin V. Zelkowitz. "An update to experimental models for validating computer technology". In: *J. Syst. Softw.* 82.3 (Mar. 2009), pages 373–376.

(Poor) state of experimentation in CS (2)

Most papers do not use even basic statistical tools

Year	Tot. papers	With error bars	Percentage
2007	89	5	5.6
2008	89	3	3.4
2009	86	2	2.4
2010	90	6	6.7
2011	81	7	8.6
2007-2011	435	23	5.3

Papers published at the Europar conference⁴

- 2007: Survey of simulators used in P2P research⁵
 - Most papers use an unspecified or custom simulator

⁴Study carried out by E. Jeannot.

⁵S. Naicken et al. "The state of peer-to-peer simulators and simulations". In: *SIGCOMM Comput. Commun. Rev.* 37.2 (Mar. 2007), pages 95–98.

State of experimentation in other sciences

- > 2008: Study shows lower fertility for mices exposed to transgenic maize
 - AFSSA report⁶:
 - ★ Several calculation errors have been identified
 - ★ led to a false statistical analysis and interpretation

⁶Opinion of the French Food Safety Agency (Afssa) on the study by Velimirov et al. entitled "*Biological effects of transgenic maize NK603xMON810 fed in long-term reproduction studies in mice*"

State of experimentation in other sciences

- > 2008: Study shows lower fertility for mices exposed to transgenic maize
 - AFSSA report⁶:
 - ★ Several calculation errors have been identified
 - ★ led to a false statistical analysis and interpretation
- > 2011: CERN Neutrinos to Gran Sasso project: faster-than-light neutrinos
 - 2012: caused by timing system failure

⁶Opinion of the French Food Safety Agency (Afssa) on the study by Velimirov et al. entitled "*Biological effects of transgenic maize NK603xMON810 fed in long-term reproduction studies in mice*"

State of experimentation in other sciences

- > 2008: Study shows lower fertility for mices exposed to transgenic maize
 - AFSSA report⁶:
 - ★ Several calculation errors have been identified
 - ★ led to a false statistical analysis and interpretation
- > 2011: CERN Neutrinos to Gran Sasso project: faster-than-light neutrinos
 - 2012: caused by timing system failure
- Solution
 Solution
 Not everything is perfect
- Sut some errors are properly identified

⁶Opinion of the French Food Safety Agency (Afssa) on the study by Velimirov et al. entitled "*Biological effects of transgenic maize NK603xMON810 fed in long-term reproduction studies in mice*"

Axes of improvement for experiments

- Improve quality
 ~ more trustworthy results
 - Testbed description
 - Experiment description
 - Control of XP conditions
 - Automatize experiments
 - Monitoring & measurement

- ► Improve scope & scale → more interesting results
 - Handle large number of nodes
 - Automatize experiments
 - Handle failures
 - Monitoring & measurement

Both goals raise similar challenges

Related to the Reproducible Research movement

- Mostly in computational sciences
- Explores tools and methods (provenance, executable papers, etc.)
- Different types of experimental reproducibility⁷:
 - Replications that vary little or not at all with respect to the reference experiment

same method, environment, parameters \rightarrow same result

 Replications that do vary but still follow the same method as the reference experiment

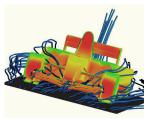
same method, but different {env., params} \rightarrow same conclusion

 Replications that use different methods to verify the reference experiment results

different method \rightarrow same conclusion

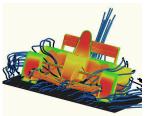
⁷Omar S. Gómez et al. "Replications types in experimental disciplines". In: *Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement.* ESEM '10. 2010.

Outline



Experimentation methodologies in Hemera

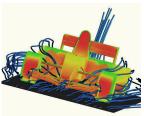
Understanding and customizing the experimental environment


- Improving control and description of experiments
- Monitoring experiments, extracting and analyzing data
- 6 Advocating good practices

Simulation

- Model application
- Model environment
- Compute interactions

Simulation

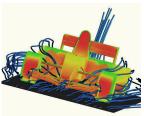

- Model application
- Model environment
- Compute interactions

Real-scale experiments

Execute the **real** application on **real** machines

Simulation

- Model application
- Model environment
- Compute interactions

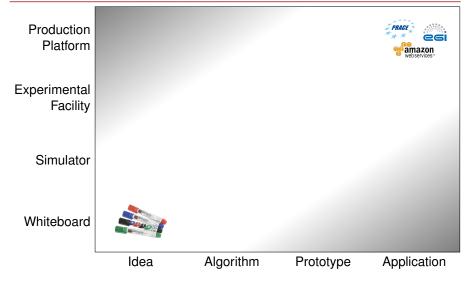

Real-scale experiments

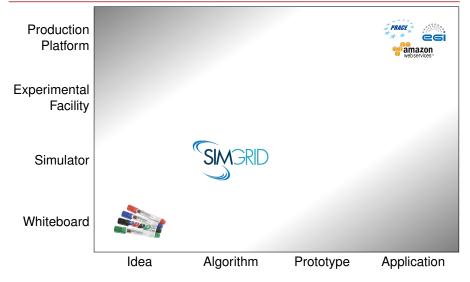
Execute the **real** application on **real** machines

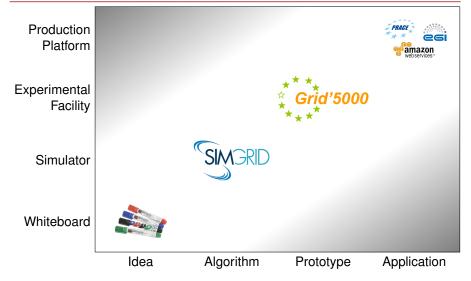
Simulation

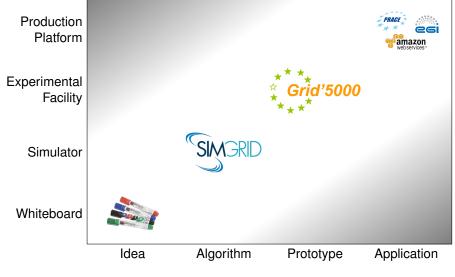
- Model application
- Model environment
- Compute interactions

Real-scale experiments

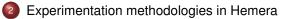



Execute the **real** application on **real** machines


Complementary solutions:


Work on algorithmsMore scalable, easier

- Work on applications
- © Perceived as more realistic



Convergence of methodologies to smoothen transitions

Outline

- Understanding and customizing the experimental environment
 - Improving control and description of experiments
- Monitoring experiments, extracting and analyzing data
- 6 Advocating good practices

Description, selection, verification of resources

- Describing resources ~> understand results
 - Detailed description on the Grid'5000 wiki
 - Machine-parsable format (JSON)


```
"processor": {
  "cache l2": 8388608.
  "cache l1": null,
  "model": "Intel Xeon".
  "instruction set": ""
  "other description": ""
  "version": "X3440",
  "vendor": "Intel".
 "cache lli": null,
 "cache lld": null.
 "clock speed": 2530000000.0
"uid": "graphene-l",
"type": "node".
"architecture": {
  "platform type": "x86 64".
 "smt size": 4,
  "smp_size": 1
"main memory": {
  "ram size": 17179869184,
 "virtual size": null
"storage devices": [
   "model": "Hitachi HDS72103".
    "size": 298023223876.953,
   "driver": "ahci".
    "interface": "SATA II".
   "rev": "JPFO",
   "device": "sda"
```

Description, selection, verification of resources

- ► Describing resources ~> understand results
 - Detailed description on the Grid'5000 wiki
 - Machine-parsable format (JSON)

- Selecting resources
 - OAR database filled from JSON oarsub -p "wattmeter='YES' and gpu='YES'"

```
"processor": {
  "cache l2": 8388608.
  "cache l1": null,
  "model": "Intel Xeon".
  "instruction set": ""
  "other description": ""
  "version": "X3440",
  "vendor": "Intel".
  "cache lli": null,
  "cache lld": null.
  "clock speed": 2530000000.0
"uid": "graphene-1",
"type": "node".
"architecture": {
  "platform type": "x86 64".
  "smt size": 4,
  "smp_size": 1
"main memory": {
  "ram size": 17179869184,
  "virtual size": null
"storage devices":
    "model": "Hitachi HDS72103".
    "size": 298023223876.953,
    "driver": "ahci".
    "interface": "SATA II".
    "rev": "JPFO".
    "device": "sda"
```

Description, selection, verification of resources

- ▶ Describing resources ~> understand results
 - Detailed description on the Grid'5000 wiki
 - Machine-parsable format (JSON)

- Selecting resources
 - OAR database filled from JSON oarsub -p "wattmeter='YES' and gpu='YES'"

Verifying resources

 G5K-checks: validates resources against their description (detect hardware failures and misconfigurations at each boot)

"processor": { "cache l2": 8388608.

"cache l1": null,

"cache_li1": null, "cache_li4": null, "lock_speed": 253000000.0 } "ui4": "graphene-1", "type: "node", "architecture": { "haltform_type1": "x86_64", "smf_size": 4 }, "main_memory1": { "rain_size": 1179065184, "virtual_size": null }, "storage devices": [

"model": "Intel Xeon", "instruction set": "",

"other_description": "" "version": "X3440", "vendor": "Intel".

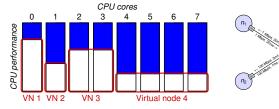
"model": "Hitachi HDS72103", "size": 298023223876.953, "driver": "ahci".

"interface": "SATA II", "rev": "JPFO", "device": "sda"

Customizing the experimental environment

- Customize software environment with Kadeploy (ADT 2011-2013)
 - Enable users to deploy their own software stack & get root access
 - Standard environments provided to users
 - ★ Customizations automated using Kameleon (J. Emeras)
 - Re-install 200 nodes in ~5 minutes
- Customize networking environment with KaVLAN
 - Deploy intrusive middlewares (Grid, Cloud)
 - Protect the testbed from experiments
 - Avoid network pollution

default VLAN routing between Grid'5000 sites

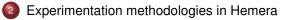

> global VLANs all nodes connected at level 2, no routing

local, isolated VLAN only accessible through a SSH gateway connected to both networks

routed VLAN separate level 2 network, reachable through routing

Customizing the experimental environment (2)

- ► Reconfigure experimental conditions with Distem (ADT Solfege 2011-2013)
 - Introduce heterogeneity in an homogeneous cluster
 - Emulate complex network topologies


http://distem.gforge.inria.fr/

10000 AUTO 15

Outline

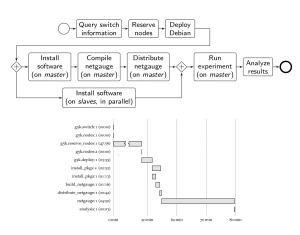
- Understanding and customizing the experimental environment
 - Improving control and description of experiments
- Monitoring experiments, extracting and analyzing data
- 6 Advocating good practices

Lucas Nussbaum Supporting Experimental Science in Distributed Systems Research 16 / 24

Improving control and description of experiments

- Legacy way of performing experiments: shell commands
 - time-consuming
 - error-prone
 - e details tend to be forgotten
- Promising solution: automation of experiments

 Executable description of experiments
- Support from the testbed: Grid'5000 RESTful API (Resource selection, reservation, deployment)

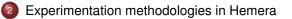


Expo (PhD Hemera Cristian Ruiz)

```
reserv = ExpoEngine::new(@connection)
reserv.site = [ "bordeaux", "lille", "luxembourg", "nancy", "sophia" ]
reserv.resources = [ "nodes=50", "nodes=10", "nodes=4", "nodes=4", "nodes=30" ]
reserv.name = "Expo Scalability"
reserv.walltime = 600
reserv.run!
sizes = [ 10, 20, 40, 50, 80, $all.length ]
$all.each_slice_array(sizes) do |nodes|
  task_mon = Task::new("hostname", nodes, " Monitoring #{nodes.length} nodes")
  10 times do
    id. res = task mon.execute
    puts " #{res.length} : #{res.duration}"
  end
end
reserv.stop!
```

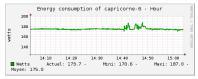
Scripting of experiments with useful & efficient abstractions

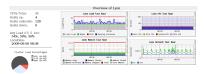
XPFlow (PhD Tomasz Buchert)




```
engine.process :exp do |site. switch|
    s = run a5k.switch.site.switch
   ns = run a5k.nodes, s
    r = run a5k.reserve nodes.
        :nodes => ns. :time => '2h'.
        :site => site, :type => :deploy
   master = (first of ns)
    rest = (tail of ns)
    run a5k.deplov,
        r. :env => 'squeeze-x64-nfs'
    checkpoint :deployed
    parallel :retry => true do
        forall rest do |slave|
            run :install pkgs, slave
        end
        sequence do
            run :install pkgs, master
            run :build netgauge, master
            run :dist netgauge,
                master, rest
        end
    end
    checkpoint :prepared
   output = run :netgauge, master, ns
    checkpoint :finished
    run :analysis, output, switch
end
```

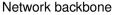
Experiment description and execution as a Business Process Workflow

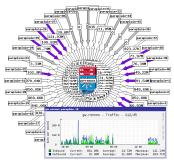

Outline



- Understanding and customizing the experimental environment
 - Improving control and description of experiments
- Monitoring experiments, extracting and analyzing data
- 6 Advocating good practices

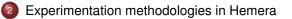
Monitoring experiments




Power consumption

CPU - memory - disk

Internal networks


Exporting and analyzing data

- Unified access to monitoring tools through the Grid'5000 API
- Automatically export data during/after an experiment
 - Next step: executable papers?

Outline

Understanding and customizing the experimental environment

- Improving control and description of experiments
- Monitoring experiments, extracting and analyzing data
- 6 Advocating good practices

Advocating good practices

- In the Grid'5000 community:
 - Best practices BOF during Grid'5000 schools
 - Challenges to demonstrate large-scale experiments

Advocating good practices

- In the Grid'5000 community:
 - Best practices BOF during Grid'5000 schools
 - Challenges to demonstrate large-scale experiments
- In the larger french community: Realis'2013
 - Goal: evaluate reproducibility of articles submitted to ComPAS
 - Process:
 - Authors submit their XP description to Realis How to describe an experiment enabling its reproduction?
 - ★ Then (try to) reproduce another article's experiment
 - 9 submissions, 8 could be reproduced (but none without help)

Conclusions

- A lot has been done in Hemera towards high-quality experimental science
- At several levels: testbed, tools, methods
- But still a long way to go!

On pourrait déterminer les différents âges d'une science par la technique de ses instruments de mesure.⁸

⁸Gaston Bachelard, La formation de l'esprit scientifique, Vrin, 1938, p. 216