Hemera challenge : Energy profiling of large scale applications

Jean-Marc Menaud (EMN - ASCOLA) – Jean-Marc Pierson (IRIT) Laurent Lefèvre (INRIA Lyon - RESO)

laurent.lefevre@inria.fr

Hemera Kick Off, Paris, October 5, 2010

How to decrease the energy consumption without impacting the performances?

- How to monitor and to analyze the usage and energy consumption of large scale platforms?
- How to apply energy leverages (large scale coordinated shutdown/slowdown) ?
- How to design energy aware software frameworks ?
- How to help users to express theirs Green concerns and to express tradeoffs between performance and energy efficiency ?

The Green Grid5000

Energy sensors

6 or 48 ports, communication via serial port Deployed on three sites of Grid'5000 Library for interfacing with energy sensors Client-side applications to obtain and store the energy consumption data

....

File View Help

Green-Net Demo 0.1b

Status of Resources:

sagit-1 74.81W 🖕	sagit-11 294.94W 🖕	sagit-21 221.42W	sagit-31 163.69W	sagit-41 43.65W	sagit-51 193.71W	sagit-61 236.40W	sagit-71 64.54W	capric-2 capric-32 capric-42 capric-52 241.65W 13 5W 83.97W 180.02W 60	
sagit-2 162.28W 😐	sagit-12 276.10W 💿	sagit-2:2 1:9.5.6W	sagit-32 274.28W	s agit-42 5 5.3 7W	sagit-52 73.74W	s agit-62 189.81W	sagit-72 203.15W	capric-3 VV 186.97h Capric-43 capric-53 192.85W 200 186.97h Capric-43 capric-53	1
sagit-3 253.17W 🖕	sagit-13 257.72W 🖕	sagit-2 3 74.6 2W 🖕	sagit-33 10.06W 🖕	sagit-43 118.46W	s agit-53 220.34W	s agit-63 214.84W	sagit-73 133.10W	capric μric-15 capric-25 μric-44 capric-54 50 72.7' 52.98W 14.16W 2 1.68W 40.37W 3	
sagit-4 290.73W o	sagit-14 32.88W	sagit-24 203.23W 💿	sagit-34 225.22W 👩	sagit-44 87.75W	sagit-54 245.74W	sagit-64 199.51W	sagit-74 234.59W	cap' 17: capric-16 capric-26 ca ^{ric-45} capric-55 51W 43.12W 2 40	
sagit-5 11.05W	sagit-15 84.01W	sagit-25 40.13W	sagit-35 298.92W 🖕	sagit-45 89.05W 🖕	sagit-55 2:45.91W	sagit-65 36.89W	sag it-75 29.49W	Cal 7 .33W 261.25W 13. c-46 capric-56 2 30	
sagit-6 199.85W	sagit-16 87.00W	sagit-26 121.88W	sagit-36 166.51W 😑	s.agit-46 1.42.07W 🖕	s agit - 56 69.71W	s agit-66 1.42.63W	sagit-76 55.75W	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
sagit-7 167.38W	sagit-17 103.75W	sagit-27 259.07W	sagit-37 285.37W	s.agit-47 214.58W	sagit-57 289.71W	sagit-67 95.29W	sagit-77 287.10W	180. a) ic-18 capric-28 c 9.40W	
sagit-8 12.01W	sagit-18 221.81W	sagit-2.8 36.93W	sagit-38 213.72W	sagit-48 12.82W	s ag it - 58 47.50W	sagit-68 244.97W	sagit-78 150.37W	capric 22 246.45W apric-49 10	
sagit-9 153.28W	sagit-19 69.04W	sagit-29 201.03W	sagit-39 77.61W	sagit-49 2.38W	sagit-59 298.60W	s.agit-69 2:5.05W	sagit-79 37.01W	capric-10 19 capric-50	
sagit-10 137.56W	sagit-20 216.04W	sagit-30 207.96W	sagit-40 129.01W	sagit-50 223.91W	sagit-60 2:44.97W	sagit-70 1.4.47W	capric-1 86.08W	capric-11 capric-2. capric-41 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	2
Resource on Resource idle Resource off O Resource monitored									

Electrical consumption / Usage

Periodicity of energy measurements:

One measurement per second for each equipment

*

Energy Profiling of applications

Profiling the energy consumption of applications

Detecting anomalies

Improving frameworks/middleware and policies

A.6 Challenge

- Exploring energy aspects at large scale
- 2 focus :
 - Applications deployed on real physical resources
 - Applications and services deployed on virtualized resources
- Providing feedback on large scale applications
- Extending the Green Grid5000
- Analyzing energy usage of large scale applications per components
- Designing energy proportional frameworks (computing, memory or network usage)

Hemera 1st year

- "Energy profiling and green leverages for services and applications in large scale distributed systems"
- Joint Phd (INRIA RESO IRIT)
- Study and Design of benchmarks for service and HPC oriented
- Inject energy in SLAs
- Exploring autonomous learning modules « try & observe & react »
- Study of energy leverages

Impact on Grid5000 / links

- Large scale energy monitoring platforms Green POP - Grid5000 development team / metrology
- Links with Interface Action on energy profiling on production infrastructures / European COST action
- Looking for applications
- Questions ?

