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General Context
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▪ Applications: Logistics, 
Supply Chain, 
Telecommunications, 
Clouds, Green-IT, etc. 

▪ NP-hard problems 
▪ Resolution methods are 

computing intensive 
!

Combinatorial Optimization
▪ Aggregated resources: 

clusters, grids, clouds, etc. 
▪ New architectures: multi-

cores, many-cores, etc. 
▪ Impressive computing 

capability (in theory) 

Computing Resources

▪ Solve Combinatorial Optimization Problems 
efficiently on large scale computing resources

General objective



Branch-and-Bound

▪ Branching: divide a problem to several sub-problems 

!
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▪ Bounding: calculate the estimated optimal solution 

▪ lower/upper bound 

!
!
▪ Select: tree exploration strategy (DFS, BFS, etc)  

!▪ Pruning: eliminate unpromising branches 

!
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Large Scale Heterogeneous Systems
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▪ Large scale systems 

▪ Heterogeneity 

▪ Node-level: compute power, programming paradigm, etc 

▪ Network-level: latency, bandwidth, etc

Multi-cores GPUs Cluster(s) Grid + P2P



Contributions
!
!
▪ Efficient parallel B&B load balancing 

!
!
▪ Efficient parallel B&B on node-heterogeneous systems 

!
!
▪ Efficient parallel B&B on link-heterogeneous systems
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!
▪ Efficient parallel B&B load balancing 
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▪ Efficient parallel B&B on node-heterogeneous systems 

!
!
▪ Efficient parallel B&B on link-heterogeneous systems
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Irregularity of B&B

➔ Workload of processing unit varies dynamically 
!
➔ Work stealing is a reference approach 
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Tree-based B&B Work Stealing 
▪ Tree-based stealing strategy: 2 steals in parallel 

▪ Synchronous steals to children or parent 

▪ Asynchronous steals to remote neighbors 

▪ Attempt to cluster idle peers 

▪ Amount of work is adjusted distributively based on 
subtree sizes 

!

Syn. Stealing

Asyn. Stealing
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Experimental Evaluation
▪ Application Settings 

▪ Taillard’s Flowshop Instances (Ta20*20) 
▪ Permutation FSP: 20 jobs on 20 machines 

▪ Generic UTS benchmark 
▪ Baseline Algorithms 

▪ H-MW: Hierarchical Adaptive MW (B&B specific) 
[Bendjoudi et al., FGCS’12, IEEE TC’13] 

▪ MW: Master-Worker (B&B specific) [Mezmaz et al., 
IDPDS’07] 

▪ RWS: (distributed) Random Work Stealing [Dinan et al., 
SC’09] 

!
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!
Our Approach vs RWS vs MW 
Large Scale (1000 peers)

▪ MW suffers from the bottleneck when scaling the system 

▪ RWS suffers fine-grain parallelism in large scales 
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Contributions
!
!
▪ Efficient parallel B&B load balancing 

!
!
▪ Efficient parallel B&B on node-heterogeneous systems 

!
!
▪ Efficient parallel B&B on link-heterogeneous systems

10



Towards heterogeneous B&B

Distributed Networks
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Towards heterogeneous B&B
▪ How to profit from current node-heterogeneous 

computing platforms in B&B computations? 

!
▪ Three main challenges: 

▪ How to map B&B and hardware parallelism? 
!

▪ How to deal with B&B workload irregularity? 
!

▪ How to deal with huge differences in compute power? 
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Heterogeneous parallel B&B
▪ The 2MBB approach  
▪ Multi-CPU Multi-GPU B&B 

!
▪ The 3MBB approach  
▪ Multi-Core Multi-CPU Multi-GPU B&B 

▪ host-device parallelism in a single CPU-GPU 

▪ Adaptive workload transfer 

▪ Hybrid stealing in multi-core systems 

▪ Lock-free work queues
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2MBB: Experimental Results

▪ CPUs: fixed to 128 

▪ 64 CPUs of 2.27 GHz 

▪ 64 CPUs of 2.5 GHz 

▪ GPUs: scale up to 20 

▪ ½ GPUs at full capacity 

▪ ¼ GPUs at half capacity 

▪ ¼ GPUs at quarter 
capacity
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2MBB: Experimental Results
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▪ Moderate scales: 

▪ We scale close to the linear speedup 

▪ Baseline suffers from node-heterogeneity 

▪ Largest scales: we are still far from the linear speedup
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3MBB: Experimental Results
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Contributions
!
!
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!
!
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!
!
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Heterogeneous links
!
!
!

!
!
!
!
!
!
!

▪ Steal requests through WAN links are expensive 
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Algorithms

Platforms
  Platform  
dependent

Generic

[J. ACM] RWS

 [Europar] PWS

[PPoPP]  CRS

 [J. SC] ACRS

State-of-the-art approaches 19



!
▪ Local Steals: based on a preference neighbors and a non-

uniform adaptive probability 
!
▪ Learn local neighbors and remote neighbors at runtime 
▪ K-Means clustering to return 2 sets of neighbors 

!
▪ Remote steals: controlled by a timing window 

▪ If the window expires and no work found remote steal 
is enabled 

▪ Window size controlled adaptively (additive Increase 
Multiplicative Decrease)

Link Heterogeneous Work Stealing
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Performance Assessment
▪ Experimentation methodology: Emulation 
▪ Deploy Distem on top of Grid’5000 
▪ Network configuration is artificially modified by 

Distem 
!

▪ Broad range of network configurations 
▪ Flat: n-level communication hierarchy 
▪ Latency between peers 

▪ Grid: two-level communication hierarchy 
▪ Latency between clusters 
▪ Number of clusters
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Flat Configuration

▪ LWS improves up to 40%
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Grid Configuration
23

▪ PWS and ACRS performance depends on application 

▪ LWS is platform and application-independent



Conclusion

▪ Design and experimental evaluation of new parallel 
B&B algorithms for large scale heterogeneous 
environments 

!
▪ In the future 
▪ Investigate more complex compute systems 

!
▪ Investigate more complex optimization problems and 

other algorithmic paradigms 

!
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Thank You ! 
Questions? 

Load Balancing Heterogenity

Combinatorial Optimization

Faults

Large scale instances

Work distribution

Overlay Mapping
Computational resources

Clusters, Grids, Clouds, Virtualized environements


