
Challenges in solving Large Scale
Optimization Problems

HEMERA — Challenge COPs
!

Leaders: B. Derbel and N. Melab
Participants: T-T VU (PhD Hemera), A. Ali (PostDoc

Hemera), M. Djamai (PhD Univ. Lille 1)

DOLPHIN — INRIA Lille Nord Europe
!

General Context
2

▪ Applications: Logistics,
Supply Chain,
Telecommunications,
Clouds, Green-IT, etc.

▪ NP-hard problems
▪ Resolution methods are

computing intensive
!

Combinatorial Optimization
▪ Aggregated resources:

clusters, grids, clouds, etc.
▪ New architectures: multi-

cores, many-cores, etc.
▪ Impressive computing

capability (in theory)

Computing Resources

▪ Solve Combinatorial Optimization Problems
efficiently on large scale computing resources

General objective

Branch-and-Bound

▪ Branching: divide a problem to several sub-problems

!

{1,2,3}

{2,3}1

21 3 31 2

{1,3}2 {1,2}3

13 2 23 1

▪ Bounding: calculate the estimated optimal solution

▪ lower/upper bound

!
!
▪ Select: tree exploration strategy (DFS, BFS, etc)

!▪ Pruning: eliminate unpromising branches

!

4 9 6

8 9 7 10

3

Large Scale Heterogeneous Systems
4

▪ Large scale systems

▪ Heterogeneity

▪ Node-level: compute power, programming paradigm, etc

▪ Network-level: latency, bandwidth, etc

Multi-cores GPUs Cluster(s) Grid + P2P

Contributions
!
!
▪ Efficient parallel B&B load balancing

!
!
▪ Efficient parallel B&B on node-heterogeneous systems

!
!
▪ Efficient parallel B&B on link-heterogeneous systems

5

Contributions
!
!
▪ Efficient parallel B&B load balancing

!
!
▪ Efficient parallel B&B on node-heterogeneous systems

!
!
▪ Efficient parallel B&B on link-heterogeneous systems

5

Irregularity of B&B

➔ Workload of processing unit varies dynamically
!
➔ Work stealing is a reference approach

6

Tree-based B&B Work Stealing
▪ Tree-based stealing strategy: 2 steals in parallel

▪ Synchronous steals to children or parent

▪ Asynchronous steals to remote neighbors

▪ Attempt to cluster idle peers

▪ Amount of work is adjusted distributively based on
subtree sizes

!

Syn. Stealing

Asyn. Stealing

7

Experimental Evaluation
▪ Application Settings

▪ Taillard’s Flowshop Instances (Ta20*20)
▪ Permutation FSP: 20 jobs on 20 machines

▪ Generic UTS benchmark
▪ Baseline Algorithms

▪ H-MW: Hierarchical Adaptive MW (B&B specific)
[Bendjoudi et al., FGCS’12, IEEE TC’13]

▪ MW: Master-Worker (B&B specific) [Mezmaz et al.,
IDPDS’07]

▪ RWS: (distributed) Random Work Stealing [Dinan et al.,
SC’09]

!

8

!
Our Approach vs RWS vs MW
Large Scale (1000 peers)

▪ MW suffers from the bottleneck when scaling the system

▪ RWS suffers fine-grain parallelism in large scales

9

Contributions
!
!
▪ Efficient parallel B&B load balancing

!
!
▪ Efficient parallel B&B on node-heterogeneous systems

!
!
▪ Efficient parallel B&B on link-heterogeneous systems

10

Towards heterogeneous B&B

Distributed Networks

CPU
CPU

CPU

CPU

CPU

CPU
CPU

GPU

GPU

CPU
CPU

GPU

GPU

11

Towards heterogeneous B&B
▪ How to profit from current node-heterogeneous

computing platforms in B&B computations?

!
▪ Three main challenges:

▪ How to map B&B and hardware parallelism?
!

▪ How to deal with B&B workload irregularity?
!

▪ How to deal with huge differences in compute power?

12

Heterogeneous parallel B&B
▪ The 2MBB approach
▪ Multi-CPU Multi-GPU B&B

!
▪ The 3MBB approach
▪ Multi-Core Multi-CPU Multi-GPU B&B

▪ host-device parallelism in a single CPU-GPU

▪ Adaptive workload transfer

▪ Hybrid stealing in multi-core systems

▪ Lock-free work queues

13

2MBB: Experimental Results

▪ CPUs: fixed to 128

▪ 64 CPUs of 2.27 GHz

▪ 64 CPUs of 2.5 GHz

▪ GPUs: scale up to 20

▪ ½ GPUs at full capacity

▪ ¼ GPUs at half capacity

▪ ¼ GPUs at quarter
capacity

14

2MBB: Experimental Results

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64 128 256

Sp
ee

du
p

#CPUs� � �

Steal 1/2
Adaptive

Linear GPU normalized Speedup

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64 128 256

Sp
ee

du
p

#CPUs

Steal 1/2
Adaptive

Linear GPU normalized Speedup

1 GPU 2 GPU

▪ Moderate scales:

▪ We scale close to the linear speedup

▪ Baseline suffers from node-heterogeneity

▪ Largest scales: we are still far from the linear speedup

15

3MBB: Experimental Results

1 GPU

2 GPUs

16

4 GPUs

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

CPUs���

2MBB

3MBB

Linear GPU normalized Speedup

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

#CPUs���

2MBB

3MBB

Linear GPU normalized Speedup

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 2 4 8 16 32 64 128 256 512

S
p

e
e
d
u
p

#CPUs

2MBB

3MBB

Linear GPU normalized Speedup

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 2 4 8 16 32 64 128 256 512

S
p

e
e

d
u

p

#CPUs

2MBB

3MBB

Linear GPU normalized Speedup

0 GPU

Contributions
!
!
▪ Efficient parallel B&B load balancing

!
!
▪ Efficient parallel B&B on node-heterogeneous systems

!
!
▪ Efficient parallel B&B on link-heterogeneous systems

17

Heterogeneous links
!
!
!

!
!
!
!
!
!
!

▪ Steal requests through WAN links are expensive

18

Algorithms

Platforms
 Platform
dependent

Generic

[J. ACM] RWS

 [Europar] PWS

[PPoPP] CRS

 [J. SC] ACRS

State-of-the-art approaches 19

!
▪ Local Steals: based on a preference neighbors and a non-

uniform adaptive probability
!
▪ Learn local neighbors and remote neighbors at runtime
▪ K-Means clustering to return 2 sets of neighbors

!
▪ Remote steals: controlled by a timing window

▪ If the window expires and no work found remote steal
is enabled

▪ Window size controlled adaptively (additive Increase
Multiplicative Decrease)

Link Heterogeneous Work Stealing
20

Performance Assessment
▪ Experimentation methodology: Emulation
▪ Deploy Distem on top of Grid’5000
▪ Network configuration is artificially modified by

Distem
!

▪ Broad range of network configurations
▪ Flat: n-level communication hierarchy
▪ Latency between peers

▪ Grid: two-level communication hierarchy
▪ Latency between clusters
▪ Number of clusters

21

Flat Configuration

▪ LWS improves up to 40%

22

Grid Configuration
23

▪ PWS and ACRS performance depends on application

▪ LWS is platform and application-independent

Conclusion

▪ Design and experimental evaluation of new parallel
B&B algorithms for large scale heterogeneous
environments

!
▪ In the future
▪ Investigate more complex compute systems

!
▪ Investigate more complex optimization problems and

other algorithmic paradigms

!

24

Thank You !
Questions?

Load Balancing Heterogenity

Combinatorial Optimization

Faults

Large scale instances

Work distribution

Overlay Mapping
Computational resources

Clusters, Grids, Clouds, Virtualized environements

