Reproducible Research on Grid'5000

Lucas Nussbaum

and many others, including Olivier Richard, Cristian Ruiz, Tomasz Buchert, the Grid'5000 architects committee and the Grid'5000 technical team

Distributed computing: a peculiar field in CS

- Most contributions are validated using experiments
 - Very little formal validation in distributed computing
 - Even for theoretical work ~> simulation (SimGrid)
- Performance and scalability are central to results
 - But depend greatly on the testbed (hardware, network, software, etc.)
 - Many contributions are about *fighting* the platform (load balancing, fault tolerance, middlewares/runtimes, etc.)
- Experimenting is difficult and time-consuming
- Shifts the scope for reproducible research:
 - How can one perform "good" experiments?
 - Very similar to (not computational) biology or physics

Author

Improved by Arnaud Legrand

Improved by Arnaud Legrand

Inspired by Roger D. Peng's lecture on reproducible research, May 2014 Improved by Arnaud Legrand

Description and verification of the testbed

Typical needs:

- Find suitable resources for my experiment
- Ensure that the resources match their description
- Find the reference of the disk on nodes used six months ago

Description and verification of the testbed

Typical needs:

- Find suitable resources for my experiment
- Ensure that the resources match their description
- Find the reference of the disk on nodes used six months ago

Reconfiguring to meet experimental needs

- Operating System reconfiguration with Kadeploy:
 - Provides a Hardware-as-a-Service Cloud infrastructure
 - Enable users to get *root* access & deploy their own software stack
 - Scalable, efficient, reliable and flexible:
 200 nodes deployed in ~5 minutes (120s with Kexec)
- Customize networking configuration with KaVLAN
 - Deploy intrusive middlewares (Grid, Cloud)
 - Protect the testbed from experiments
 - Avoid network pollution
 - By reconfiguring VLANS ~> almost no overhead
 - Recent work: support several interfaces

KADEPLOY

Creating and sharing Kadeploy images

- Avoid manual customization:
 - Easy to forget some changes
 - Difficult to describe
 - The full image must be provided
 - Cannot really be used as a basis for future experiments (similar to binary vs source code)
- Kameleon: Reproducible generation of software appliances
 - Using *recipes* (high-level description)
 - Persistent cache to allow re-generation without external resources (Linux distribution mirror) → self-contained archive
 - Supports Kadeploy images, LXC, Docker, VirtualBox, qemu, etc.

http://kameleon.imag.fr/

PhD of Cristian Ruiz (Hemera PhD)

Changing experimental conditions

- Reconfigure experimental conditions with Distem
 - Introduce heterogeneity in an homogeneous cluster
 - Emulate complex network topologies

 Collaborations with Trong-Tuan Vu (Hemera PhD, Dolphin team) and Abhishek Gupta (UIUC, Laxmikant Kalé)

http://distem.gforge.inria.fr/

Monitoring experiments

Goal: enable users to understand what happens during their experiment

CPU - memory - disk

Network backbone

Power consumption

Internal networks

Monitoring experiments (2)

- Current work: high resolution monitoring for energy & network
 - Collaboration between Lyon and Nancy

10/13

Improving control and description of experiments

- Legacy way of performing experiments: shell commands
 - time-consuming
 - 🙁 error-prone
 - ③ details tend to be forgotten over time
- Promising solution: automation of experiments

 Executable description of experiments
- Support from the testbed: Grid'5000 RESTful API (Resource selection, reservation, deployment)

Tools for automation of experiments

Several projects around Grid'5000 (but not specific to Grid'5000):

- g5k-campaign (G5K tech team)
- Expo (Cristian Ruiz)
- Execo (Mathieu Imbert)
- XPFlow (Tomasz Buchert)

Features:

- Facilitate scripting of experiments in high-level languages (Ruby, Python)
- Provide useful and efficient abstractions :¹
 - Testbed management
 - Local & remote execution of commands
 - Data management
- *Engines* for more complex processes

¹Tomasz Buchert et al. "A survey of general-purpose experiment management tools for distributed systems". In: *Future Generation Computer Systems* (2015).

Experiment description and execution as a Business Process Workflow

Supports parallel execution of activities, error handling, snapshotting, built-in logging, etc. soon: automatic provenance collection

What's next?

- Description and verification of the testbed
 - Provide testbed description in other formats (SimGrid) 80% done
 - Track testbed's performance history
 - Support for archiving the state of the testbed before experiments
- Reconfiguring the testbed to meet experimental needs
 - Enabling users to change BIOS parameters (power, HT, TB)
 - Providing control over cooling, network and storage systems
- Monitoring experiments, extracting/analyzing data
 - Monitor other pieces of the infrastructure (e.g. storage)
 - Provide long-term archival of experiments and traces
- Control and description of experiments
 - Extend and improve the API (reliability, features)
 - Foster collaboration on XP control tools, and transfer them to users

One could determine the age of a science by looking at the state of its measurement tools.

Gaston Bachelard - La formation de l'esprit scientifique, 1938

Bibliography

- Resources management: Resources Description, Selection, Reservation and Verification on a Large-scale Testbed. http://hal.inria.fr/hal-00965708
- Kadeploy: Kadeploy3: Efficient and Scalable Operating System Provisioning for Clusters. http://hal.inria.fr/hal-00909111
- KaVLAN, Virtualization, Clouds deployment:
 - Adding Virtualization Capabilities to the Grid'5000 testbed. http://hal.inria.fr/hal-00946971
 - Enabling Large-Scale Testing of IaaS Cloud Platforms on the Grid'5000 Testbed. http://hal.inria.fr/hal-00907888
- Kameleon: Reproducible Software Appliances for Experimentation. https://hal.inria.fr/hal-01064825
- Distem: Design and Evaluation of a Virtual Experimental Environment for Distributed Systems. https://hal.inria.fr/hal-00724308

XP management tools:

- A survey of general-purpose experiment management tools for distributed systems. https://hal.inria.fr/hal-01087519
- XPFlow: A workflow-inspired, modular and robust approach to experiments in distributed systems. https://hal.inria.fr/hal-00909347
- Using the EXECO toolbox to perform automatic and reproducible cloud experiments. https://hal.inria.fr/hal-00861886
- Expo: Managing Large Scale Experiments in Distributed Testbeds. https://hal.inria.fr/hal-00953123

A multi-tier challenge

Experimental methodology:

experiment design & planning (workflow) ; description of scenarios, of experimental conditions ; definition of metrics ; analysis and visualization of results

Orchestration of experiments:

organize the execution of complex and large-scale experiments (workflow) ; run experiments unattended and efficiently ; handles failures ; compose experiments

Basic services: common tools required by most experiments			
Interact w/ testbed	Manage the environment	Manage data	Instrument the application & the environment
find, reserve and			
configure resources			
Test resources before using them	Control a large number of nodes	Change experimental conditions	Monitoring and data collection

reconfigurable hardware and network; isolation; some instrumentation and monitoring

-ayer 1

Layer 3

Layer 2

Conclusions

- Grid'5000: a testbed for high-quality, reproducible research on HPC, Clouds and Big Data
- With a unique combination of features
 - Description and verification of testbed
 - Reconfiguration (hardware, network)
 - Monitoring
 - Support for automation of experiments
- ► Paving the way to Open Science of HPC and Cloud mid term goals:
 - Fully automated execution of experiments
 - Automated tracking + archiving of experiments and associated data

One could determine the age of a science by looking at the state of its measurement tools.

Gaston Bachelard - La formation de l'esprit scientifique, 1938