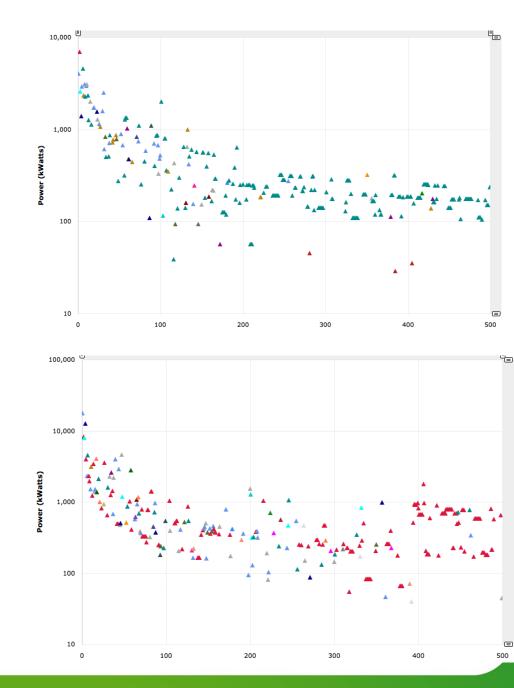


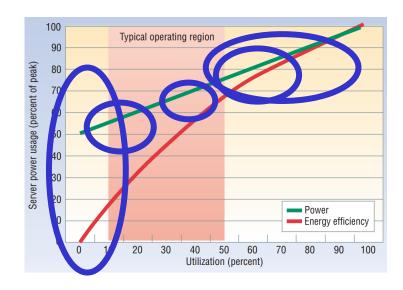
Energy Profiling/ Efficiency / Proportionality >> The Green Activities in Hemera


Laurent Lefèvre laurent.lefevre@inria.fr

Hemera Final Evaluation, Paris, December 17, 2014

INRIA AVALON / LIP Ecole Normale Supérieure de Lyon

Energy: 1st limiting factor for large scale systems ((hpc)datacenter, clouds, internet)?


- Energy consumption is growing:
 Top500: Nov 2010: 127 MW Nov
 2014: 215 MW (not all referenced) Green500: 590 MW (Nov. 14 all referenced)
- Only usage! not the full life cycle which is bad: planned obsolescence, rebound effect, design (rare minerals), difficult recycling...
- How to build future infrastructures platforms and make them (more) energy sustainable/responsible ? Multi dimension approaches : hardware, software, usage

Energy@Hemera: 3 selected adressed scientific challenges

- Energy Profiling and Modeling: How to profile energy usage of large scale distributed systems? Focus on physical resources (servers and networks) & virtual machines
- Energy Efficiency: Providing energy
 efficiency to parallel applications? Applying
 large scale leverages without apriori
 knowledge of applications
- Energy Proportionality : Dealing with hybrid computing

Luiz André Barroso and Urs Hölzle, « The case for Energy-Proportional Computing », IEEE Computer, 2007

Green activities during Hemera

Scientific challenge: Energy Profiling of Large Scale Applications -- Laurent Lefèvre (Avalon), Jean-Marc Pierson (Sepia), Jean-Marc Menaud (Ascola)

Working Group: Energy Efficient Large Scale Experimental Distributed Systems --Laurent Lefèvre (Avalon), Jean-Marc Menaud (Ascola)

Core teams: Ascola (Nantes), Avalon (Lyon), Mescal (Grenoble), Myriads (Rennes), Reso (Lyon), Astre/Sepia (IRIT, Toulouse)

Second circle teams : Adam (Lille), Dolphin (Lille), LRI, Univ Luxembourg, Telecom ParisTech + Industrial partners : Bull, Eaton

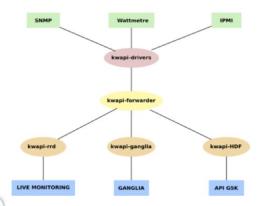
Joint Phds : G. Landry Tsafack (Reso-Astre) & V. Villebonnet (Avalon-Sepia) Joint Postdocs: B. Cornea (Myriads-Avalon), H. Kumar Mehta (Ascola-Sepia)

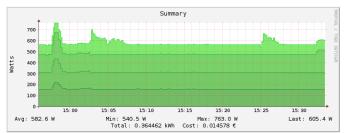
Energy profiling: The Green Grid5000

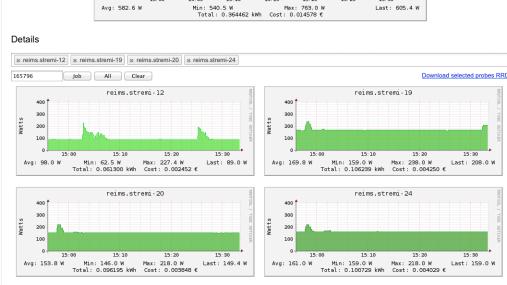
Eaton, Schleifenbauer, OmegaWatt, Dell iDrac6, WattsUp, Zimmer LMG450,...

Name	Protocol(s)/Link(s)	Frequency	Resolution
Eaton	Serial or SNMP/Ethernet	5s	1 W
Schleifenbauer	SNMP/Ethernet	3s	0.1 W
OmegaWatt	"IrDA"/Serial	1s	0.125 W
Dell iDrac6	IPMI/Ethernet	5s	7 W
WattsUp?	Legacy/USB	1s	0.1 W
ZES LMG450	Serial	0.05s	0.01 W

Extending to profiling to low power processors: SBC card (Mescal)


New Kwapi Grid5000 API for Energy profiling in production

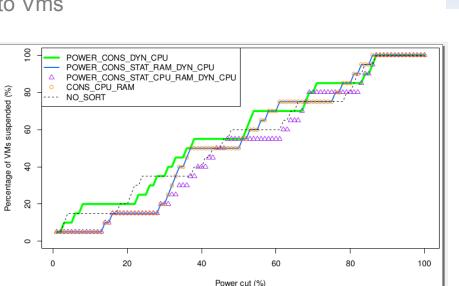


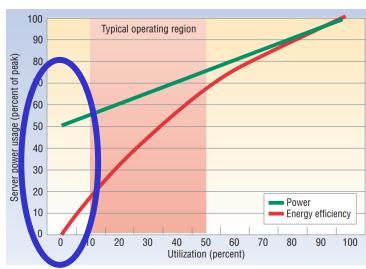

Unified way to access energy logs for energy profiling

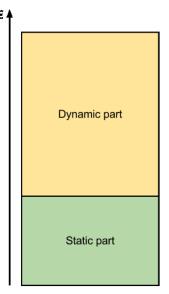
- Energy consumption per resource
- Energy consumption per user jobs

Energy measurement injection in user application and services

Profiling energy consumption of virtual resources

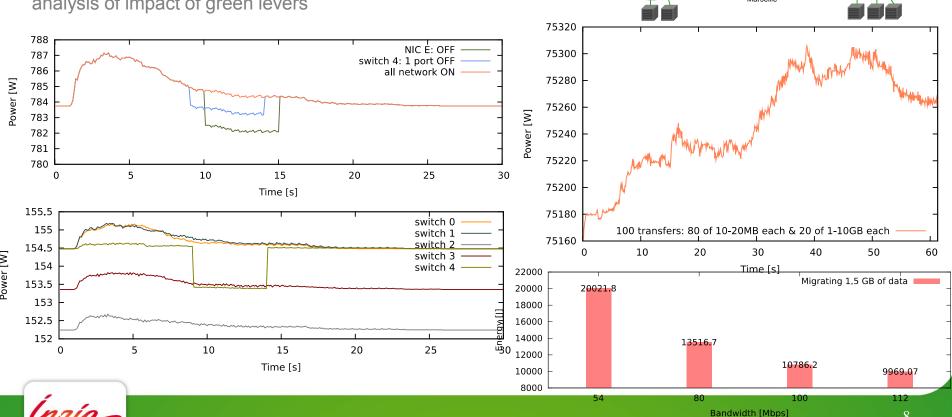

Joint Postdoc: H. Kumar Mehta (Ascola-Sepia 2013-14)


– GreenCom2013


Estimating energy consumption of virtual machines

Focus on idle VMs (in order to manage on/off of physical resources)

Various policies of splitting static&dynamic electrical costs to Vms



Including Energy profile of networks

Joint Postdoc : B. Cornea (Myriads-Avalon 2013-2014) – IEEE CloudNet2014

Some infrastructure are too difficult to profile (remote network equipment, end2end architectures...) – simulation is mandatory The ecofen approach - From NS3 to SimGrid

Ex: full network profiling, adding net energy cost in VM migration, analysis of impact of green levers

Postdoo

Luxembourg

Lille

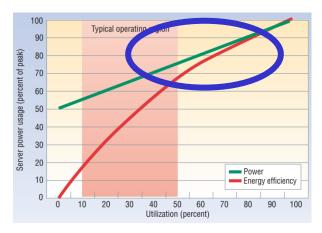
Paris

1 Gbps

- 10 Gbps Rennes

Energy efficiency: adapt resources to the need of applications

Hemera

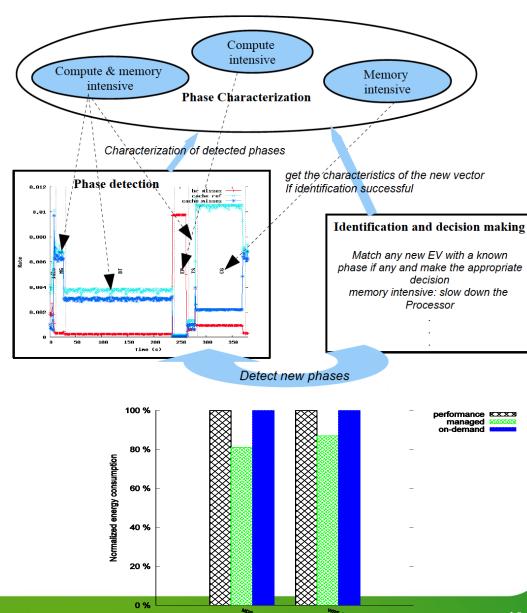

HPC applications keep growing in complexity: too many bugs in HPC applications already present, adding energy management and considerations won't help:=)

HPC programmers are not yet ready for eco design of applications

Applications can share the same infrastructure: Optimizations made for saving energy considering some applications are likely to impact the performance of others

Instead of looking at applications and service => Focusing on the infrastructure

- Detect and characterize system's runtime behaviours/phases
- Optimize each subsystem (storage, memory, interconnect, CPU) accordingly


Joint PhD: G. Tsafack Chetsa (RESO-Astre 2010-13) – FGCS2013, PDP2015, Greencom2013, ICPADS12, SBAC-PAD12

Online analysis without knowledge on applications

- Irregular usage of resources
- Phase detection, characterisation
- Power saving modes deployment
- MREEF framework

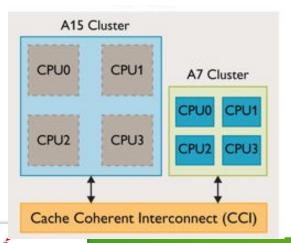
Phase label	Possible reconfiguration decisions	
compute intensive	switch off memory banks; send disks to sleep;	
	scale the processor up; put NICs into LPI mode	
memory intensive	scale the processor down; decrease disks	
	or send them to sleep; switch on memory banks	
mixed	switch on memory banks; scale the processor up	
	send disks to sleep; put NICs into LPI mode	
communication	switch off memory banks; scale the processor down	
intensive	switch on disks	
I/O intensive	switch on memory banks; scale the processor down;	
	increase disks, increase disks (if needed)	

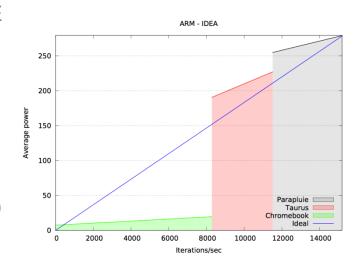
What about missing parts of the curve?

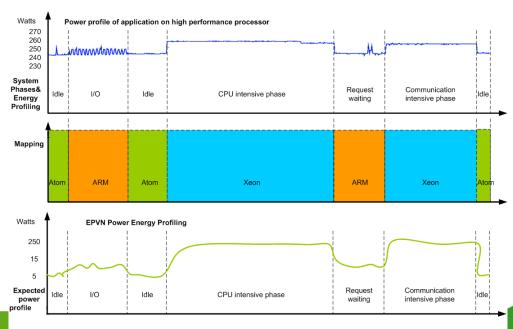
- Specific conditions of workload
- Gaps between bursts

 Exploiting heterogeneity of processors (flops, watts, flops per watt) to fill the missing parts

The graal of energy proportionnality


Joint Phd: V. Villebonnet (Sepia-Avalon 2013-16) – IEEE Sustaincom2014


Dealing with heterogeneous computing for energy efficiency and proportionality


Coordinating and mapping jobs on multi (heterogeneous)

CPUs – extending BIG.Little concept

Proof of concept: application classes

Inria

(ideal case)

Energy@Hemera: Animations

- The GreenDays series:
 - GreenDays@Rennes (July 2014): "Data deluge, virtual machines and connected objects: Energy Efficiency more than ever needed. Impact on architectures, systems and networks"
 - GreenDays@Lille (Nov. 2013): "HPC & Cloud: Are they green?"
 - GreenDays@Luxembourg (Jan. 2013): "Energy efficiency: what else / what next?"
 - GreenDays@Lyon (Jan. 2012): "Energy efficiency: how to monitor and impact on applications?"
 - GreenDays@Paris (June 2011): "Energy efficiency: how to apply our models and solutions in production infrastructures?"

- Tutorial series during G5K school : Put some Green in your Grid'5000 experiments!

(2010,2011,2014)

- Sharing traces: ICT Energy Logs repository

Energy@Hemera Summary

Addressing strong scientific challenges which were needing joint teams expertise Community structuring / sharing of knowledge

Exchange and integration of tools and software components between teams, prototype tools to "production"

Post Hemera: Green activities continue...

Animation: GreenDays@Toulouse (March 2015)

Joint Proposals : ANR

laurent.lefevre@inria.fr