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MapReduce : A Framework for Big Data 
Processing

Introduced by Google to support parallel processing of highly 
distributable problems, e.g. PageRank

● Hadoop: an open source (Apache) distribution of MR 
● Used by many companies for Big Data processing, e.g. Yahoo, 

Facebook

Programming principle:
● Map step: The input data is divided to smaller split, and each split 

is processed by a map worker to produce a set of intermediate 
key-values 

Reduce step: all values of each key are transferred to one reduce 
worker where a reduce function is applied on them to produce the 
final results

Shuffle: process of sorting, grouping and transferring intermediate 
key-values from map to reduce workers.
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MapReduce Architecture
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Dealing With Data Skew in 
MapReduce

Problem:
● Poor performance in case of skew in reduce 
phase

● In some applications, a high percentage of 
values is processed by one reducer

● E.g. Top-k, Skyline, some Aggregate queries
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Our Solution: FP-Hadoop

● Main idea: an intermediate reduce (IR) phase
– An IR function (e.g. combiner) is executed  over 

blocks of intermediate values

– Using all  workers of the system

● Features of IR phase
– Collaborative reducing of each key

– Hierarchical execution plans

– Optimized scheduling of distributed blocks
● In contrast to combinerf unction, the IR function is 

applied over distributed intermediate blocks
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Data Flow in FP-Hadoop
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Performance Evaluation
● Test platform: Grid5000

● FP-Hadoop : up to 10x faster than Hadoop (MR) in 
reduce time and 5x in total execution time
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Data Partitioning for Reducing Data Transfer in 
MapReduce

● The shuffle phase may involve large data transfers
– Because each mapper sends high data volumes to each reducer

● Result: high response time of some jobs because of slow shuffle 

● Ideal case: 
– Values of each key are produced at one map worker, and are reduced by the 

same worker
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Our Contribution
MR-Part: A new approach for minimizing data transfers in MapReduce

 Implemented on top of Hadoop
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Experiments

Environment
• Grid5000

Comparison
• Native Hadoop (NAT)

• Hadoop + reduce locality-aware scheduling (RLS)

• MR-Part (MRP)

Benchmark
• TPC-H, MapReduce version

Parameters
•  Data size, cluster size, bandwidth

Metrics
• Transferred data

• Latency (response time)
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Performance Evaluation 

Percentage of transferred data
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Frequent Sequences: TeraBytes 
of data

- Bull’s clusters (e.g. CURIE) need careful management and real-time 
monitoring.

- Clusters’ nodes send lots of messages in log files that:
- Cannot be explored by humans (hundreds of Tera-bytes) 

- Zenith is designing massively distributed data mining methods that 
scale for analyzing this huge data

- Patterns discovered from these logs will feed rule bases that allow 
monitoring the clusters and trigger alarm in case of possible anomaly.

ongoing work with Bull
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Frequent Sequences: TeraBytes 
of data

Message logs (hundreds of Tera-bytes)
47 2013 Jun 30 03:29:07 kay0 daemon info named error 1#53
47 2013 Jun 30 03:29:07 kay0 daemon info named error 2#53
48 2013 Jun 30 03:29:07 kay0 daemon info named error 1#53
49 2013 Jun 30 03:29:09 kay0 daemon info named error 5#53
50 2013 Jun 30 03:29:09 kay0 daemon info named error 5#53
50 2013 Jun 30 03:29:09 kay475 syslog err syslog-ng I/O 
50 2013 Jun 30 03:29:09 kay475 syslog notice syslog-ng Error 
51 2013 Jun 30 03:29:09 kay475 syslog notice syslog-ng Suspending 
52 2013 Jun 30 03:29:10 kay0 daemon info named error 5#53
53 2013 Jun 30 03:29:10 kay0 daemon info named error 5#53
53 2013 Jun 30 03:29:10 kay0 daemon info named error 5#53
53 2013 Jun 30 03:29:11 kay0 daemon info named error f#53

Patterns

…
Daemon error + syslog error -> Suspending
User notice + IO warning -> syslog error
…

Rules

Monitoring

ongoing work with 
Bull
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Data Partitioning for Frequent Itemset 
Mining 

● Improving frequent itemset mining algorithms based 
on input data partitioning 

• Mappers of MapReduce work on partitions

 A new data partitioning technique: Item based data 
partitioning
Objective: Mining several Terabytes of data 

(Clouweb) 

 

ongoing work 
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Hadoop_g5k: a Tool for Easy Hadoop Deployment 
in Grid5000

Overview
• Initiated by Miguel Liroz (research engineer in Zenith)

• Scripts and APIs to deploy Hadoop applications in G5K

• Based on execo library

• Documentation available in G5K wiki, and sources in GitHub

Features

● Manages whole life-cycle of Hadoop clusters

● Supports several versions of Hadoop and hides configuration details

● Automatic configuration based on best practices

– Topology, number of slots, memory per task, etc.
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Conclusion

Big Data Processing and Analysis

● Dealing with skew in big data processing

● Data partitioning for reducing network traffic in 
MapReduce framework

● Error pattern detection in Bull super-computer logst 

● Large scale frequent itemset mining 

To evaluate all these solutions

● We use Grid5000

● Requirement: more storage capacity 
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Questions ?

Web Site: search “Zenith Team” in Google
Email: Reza.Akbarinia@inria.fr

mailto:Reza.Akbarinia@inria.fr
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hg5k

An example
• Creation + installation + initialization/start

• Job execution

• Destruction

•  

hg5k --create $OAR_FILE_NODES
hg5k --bootstrap $LIB_HOME/hadoop-1.2.1.tar.gz
hg5k --initialize –start
hg5k --jarjob $LIB_HOME/hadoop-test-1.2.1.jar mrbench
hg5k --delete
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hadoop_engine

Features
• Test automatization for Hadoop based experiments

• Optimizes dataset creation and/or deployment

• Generates ds/xp configuration + statistics for all combinations

• (to appear) Automatic generation of figures from results

Example (from wiki)

•  

[test_parameters]
test.summary_file = ./test/summary.csv
test.ds_summary_file = ./test/ds-summary.csv
test.stats_path = ./test/stats 

[ds_parameters]
ds.class = hadoop_g5k.dataset.StaticDataset
ds.class.local_path = datasets/ds1
ds.dest = ${data_dir}
ds.size = 1073741824, 2147483648 # 1 | 2 GB

[xp_parameters]
io.sort.factor = 10, 100
xp.combiner = true, false
xp.job = program.jar || ${xp.combiner} other_job_options ${xp.input} ${xp.output}

Where results are stored

Dataset configuration

Experiments configuration


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Experiments
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Overview
	Slide 17
	Slide 18
	hg5k
	hadoop_engine

