Submitit: Difference between revisions

From Grid5000
Jump to navigation Jump to search
Line 431: Line 431:


Despite the differences between OAR and Slurm-based clusters,
Despite the differences between OAR and Slurm-based clusters,
the first version, the supported and not supported parameters are listed in [[#Parameters|the table below]]. The not supported functionalities are the tasks notion of Slurm, the memory management of the job, the job array and the asynchronous job supports.

Revision as of 10:57, 20 June 2023

Submitit

Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps submission and provide access to results, logs and more. Slurm is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small Linux clusters. Submitit allows to switch seamlessly between executing on Slurm or locally. Source code, issues and pull requests can be found here.

Currently, development is in progress for an OAR plugin, to facilitate the switch between OAR and Slurm-based resource managers. Source code for an OAR plugin can be found here. Fort the first version, the supported and not supported parameters are listed in the table below. The not supported functionalities are the tasks notion of Slurm, the memory management of the job, the job array and the asynchronous job supports.

Submitit installation

Note.png Note

Submitit should be installed in a folder accessible by both the frontend and the nodes. For example, by installing it in your homedir, we are guaranteed that Submitit is available by both the frontend and the nodes.

Note.png Note

Python 3.6+ is required to install Submitit

Using pip

pip can be used to install the stable release of submitit:

Terminal.png fontend.site:
pip install --user submitit

To use the last version including the OAR plugin, an installation from Source can be done:

It is recommended to install python dependencies via a virtual environment. To do so, before running the pip command:

Terminal.png fontend.site:
cd my_submitit_jobqueue_project
Terminal.png fontend.site:
python3 -m venv env
Terminal.png fontend.site:
source env/bin/activate

Using conda

conda can be used to install submitit from the conda-forge:

Terminal.png fontend.site:
conda install -c conda-forge submitit

To use the last version including the OAR plugin, you can create a conda environment file(e.g. "conda-env-submitit.yml") as:

name: submitit
dependencies:
  - pip:
    - git+https://gitlab.inria.fr/moyens-de-calcul/submitit.git@master#egg=submitit

and then install the last version of Submitit using this environment file

Terminal.png fontend.site:
conda env create --file conda-env-submitit.yml
Terminal.png fontend.site:
source activate submitit

Basic usage

Performing an addition with Submitit

Here is a Python script example which allows to execute an addition job on Slurm, OAR or locally.

import submitit

def add(a, b):
    return a + b

# logs are dumped in the folder
executor = submitit.AutoExecutor(folder="log_test")

job_addition = executor.submit(add, 5, 7)  # will compute add(5, 7)
output = job_addition.result()  # waits for completion and returns output
print('job_addition output: ', output)
assert output == 12

The example script needs to be launched on frontend as follow:

Terminal.png flille:
python3 this-script.py

The addition job will be computed on the cluster. For each job, in the working folder that you defined (e.g., folder="log_test"), you will find a stdout log file jobId_log.out, a stderr log file jobId_log.err, a submission batch file jobId_submission.sh, a task file jobId_submitted.pkl and an output file jobId_result.pkl.

Advanced usage

Parameters

Parameters for cluster can be setted by update_parameters(**kwargs).

The AutoExecutor shown in the basic usage example above is the common submission interface, for OAR/Slurm clusters and local jobs.

To use the cluster specific parameters with the AutoExecutor, they must be appended by the cluster name, e.g., slurm_partition="cpu_devel", oar_queue="default". These cluster specific options will be ignored on other clusters.

executor = submitit.AutoExecutor(folder="log_test")
executor.update_parameters(slurm_partition="cpu_devel", oar_queue="default")
Note.png Note

Cluster specific parameters win over common parameters.

E.g. if both oar_walltime and timeout_min are provided, then:

  • oar_walltime is used on the OAR cluster
  • timeout_min is used on other clusters


The cluster specific parameters can also be used with cluster specific Executors, without the cluster name prefixes, e.g., SlurmExecutor, OarExecutor.

executor = submitit.OarExecutor(folder="log_test")
executor.update_parameters(walltime="0:0:5", queue="default")

The following table recaps the parameters supported by AutoExecutor, OARExecutor and SlurmExecutor:

AutoExecutor OARExecutor SlurmExecutor Description
timeout_min walltime in hh:mm:ss time timeout in minutes
name n job_name 'submitit' by default
nodes nodes nodes number of nodes in int
oar_queue slurm_partition string
gpus_per_node gpu gpus_per_node or --gres=gpu:xx number of gpu in int
stderr_to_stdout not supported stderr_to_stdout boolean
tasks_per_node not supported ntasks_per_node int
cpus_per_task not supported cpus_per_task int
mem_gb not supported mem string

Checkpointing with Submitit

Checkpointing with Submitit on Slurm cluster is provided with the job requeue mechanism and the self defined checkpoint method:

  • The job requeue mechanism will reschedule the checkpointed job after preemption or timeout. The states of the same job are changed from running to pending and running again to finish the job.
  • The self defined checkpoint method will prepare the new submission with the current state of the computation. It should include a signature able to receive parameters from the callable function (an instance of a class with a __call__ method). When the preemption signal is sent, the checkpoint method will be called asynchronously, with the same arguments as the callable function.


Doing checkpointing with Submitit on OAR cluster, with the OAR plugin approach, requires a precise understanding of the inner working of the checkpointing and the job pickling of Submitit.

The self defined checkpoint method is practically the same for OAR and Slurm. However, when an OAR job is checkpointed after preemption or timeout signal, it is systematically terminated. Another OAR job can be submitted with the "resubmit_job_id" property to finish the previously checkpointed and terminated job. However, the Submitit's job requeue mechanism provided in JobEnvironment is not relevant here. We have to resubmit another job with the current state of the computation in the original job. The resubmission can be done either manually with oarsub --resubmit=origin_job_id, or automatically by OAR if our job is idempotent.


An MNIST example showing checkpointing with Submitit on Slurm cluster is available here.

Scikit-learn (with numpy, scipy) is required to run the MNIST example. You can refer to this page to install scikit-learn.

To have the same behavior on OAR cluster with the Submitit OAR plugin, you can run the following adapted MNIST example:

# Copyright (c) Arthur Mensch <arthur.mensch@m4x.org>
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD 3-clauses license.
# Original at https://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html
#

import functools
import pickle
import time
from pathlib import Path

import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state

import submitit


class MnistTrainer(submitit.helpers.Checkpointable):
    """
    This shows how to rewrite a monolith function so that it can handle preemption nicely,
    and not restart from scratch everytime it's preempted.
    """

    def __init__(self, clf):
        # This is the state that will be saved by `checkpoint`
        self.train_test = None
        self.scaler = None
        self.clf = clf
        self.trained_clf = False
        self.stage = "0"

    def __call__(self, train_samples: int, model_path: Path = None):
        # wait here 60s at first 
        # since only >60s + exit code 99 + idempotent jobs can be resubmitted automatically by OAR
        time.sleep(60)

        # `train_samples` and `model_path` will also be saved
        log = functools.partial(print, flush=True)
        log(f"*** Starting from stage '{self.stage}' ***")

        if self.train_test is None:
            self.stage = "Data Loading"
            t0 = time.time()
            log(f"*** Entering stage '{self.stage}' ***")
            # Load data from https://www.openml.org/d/554
            X, y = fetch_openml("mnist_784", version=1, return_X_y=True)
            X, y = X.to_numpy(), y.to_numpy()

            random_state = check_random_state(0)
            permutation = random_state.permutation(X.shape[0])
            X = X[permutation]
            y = y[permutation]
            X = X.reshape((X.shape[0], -1))

            # Checkpoint 1: save the train/test splits
            X_train, X_test, y_train, y_test = train_test_split(
                X, y, train_size=train_samples, test_size=10000
            )
            self.train_test = X_train, X_test, y_train, y_test
            log(f"Loaded data, shuffle and split in {time.time() - t0:.1f}s")

        X_train, X_test, y_train, y_test = self.train_test
        if self.scaler is None:
            self.stage = "Data Cleaning"
            t0 = time.time()
            log(f"*** Entering stage '{self.stage}' ***")
            scaler = StandardScaler()
            X_train = scaler.fit_transform(X_train)
            X_test = scaler.transform(X_test)
            # Scaling is actual pretty fast, make it a bit slower to allow preemption to happen here
            time.sleep(10)
            # Checkpoint 2: save the scaler and the preprocessed data
            self.scaler = scaler
            self.train_test = X_train, X_test, y_train, y_test
            log(f"Scaled the data took {time.time() - t0:.0f}s")

        if not self.trained_clf:
            self.stage = "Model Training"
            t0 = time.time()
            log(f"*** Entering stage '{self.stage}' ***")
            self.clf.C = 50 / train_samples
            self.clf.fit(X_train, y_train)
            # Checkpoint 3: mark the classifier as trained
            self.trained_clf = True
            log(f"Training took {time.time() - t0:.0f}s")

        sparsity = np.mean(self.clf.coef_ == 0) * 100
        score = self.clf.score(X_test, y_test)
        log(f"Sparsity with L1 penalty: {sparsity / 100:.2%}")
        log(f"Test score with L1 penalty: {score:.4f}")

        if model_path:
            self.save(model_path)
        return score

    def checkpoint(self, *args, **kwargs):
        print(f"Checkpointing at stage '{self.stage}'")
        return super().checkpoint(*args, **kwargs)

    def save(self, model_path: Path):
        with open(model_path, "wb") as o:
            pickle.dump((self.scaler, self.clf), o, pickle.HIGHEST_PROTOCOL)


def main():
    t0 = time.time()
    # Cleanup log folder.
    # This folder may grow rapidly especially if you have large checkpoints,
    # or submit lot of jobs. You should think about an automated way of cleaning it.
    folder = Path(__file__).parent / "mnist_logs"
    if folder.exists():
        for file in folder.iterdir():
            file.unlink()

    ex = submitit.AutoExecutor(folder)
    if ex.cluster == "oar":
        print("Executor will schedule jobs on Oar.")
    else:
        print(f"!!! Oar executable `oarsub` not found. Will execute jobs on '{ex.cluster}'")
    model_path = folder / "model.pkl"
    trainer = MnistTrainer(LogisticRegression(penalty="l1", solver="saga", tol=0.1, multi_class="auto"))

    # Specify the job requirements.
    # Reserving only as much resource as you need ensure the cluster resource are
    # efficiently allocated.
    ex.update_parameters(oar_core=4, timeout_min=5)
    job = ex.submit(trainer, 5000, model_path=model_path)

    print(f"Scheduled {job}.")

    # Wait for the job to be running.
    while job.state.upper() != "RUNNING":
        time.sleep(1)

    print("Run the following command to see what's happening")
    print(f"  less +F {job.paths.stdout}")

    # Simulate preemption.
    # Tries to stop the job after the first stage.
    # If the job is preempted before the end of the first stage, try to increase it.
    # If the job is not preempted, try to decrease it.
    time.sleep(85)
    print(f"preempting {job} after {time.time() - t0:.0f}s")
    job._interrupt()

    score = job.result()
    print(f"Finished training. Final score: {score}.")
    print(f"---------------- Job output ---------------------")
    print(job.stdout())
    print(f"-------------------------------------------------")

    assert model_path.exists()
    with open(model_path, "rb") as f:
        (scaler, clf) = pickle.load(f)
    sparsity = np.mean(clf.coef_ == 0) * 100
    print(f"Sparsity with L1 penalty: {sparsity / 100:.2%}")


if __name__ == "__main__":
    main()


This example script needs to be launched on frontend, in a virtual environment, as follow:

Terminal.png fontend.site:
cd sklearn_env
Terminal.png fontend.site:
source sklearn_env/bin/activate
Terminal.png fontend.site:
python mnist.py


The output (of the original job and the submitted job) is as follow:

Executor will schedule jobs on Oar.
Scheduled OarJob<job_id=1938801, task_id=0, state="Waiting">.
Run the following command to see what's happening
  less +F /home/ychi/sklearn_env/mnist_logs/1938801_0_log.out
preempting OarJob<job_id=1938801, task_id=0, state="Running"> after 92s
Checkpointing the job 1938801 ...DONE.
The job 1938801 was notified to checkpoint itself on chetemi-13.lille.grid5000.fr.
Finished training. Final score: 0.8222.
---------------- Job output ---------------------
submitit INFO (2023-03-23 12:33:42,410) - Starting with JobEnvironment(job_id=1938801_0, hostname=chetemi-13.lille.grid5000.fr, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2023-03-23 12:33:42,410) - Loading pickle: /home/ychi/sklearn_env/mnist_logs/1938801_submitted.pkl
*** Starting from stage '0' ***
*** Entering stage 'Data Loading' ***
submitit INFO (2023-03-23 12:35:10,917) - Job has timed out. Ran 1 minutes out of requested 5 minutes.
submitit WARNING (2023-03-23 12:35:10,917) - Caught signal SIGUSR2 on chetemi-13.lille.grid5000.fr: this job is timed-out.
submitit INFO (2023-03-23 12:35:10,917) - Calling checkpoint method.
Checkpointing at stage 'Data Loading'
submitit INFO (2023-03-23 12:35:10,922) - Exiting job 1938801_1 with 99 code, (2 remaining timeouts)

submitit INFO (2023-03-23 12:35:27,490) - Starting with JobEnvironment(job_id=1938801_0, hostname=chetemi-13.lille.grid5000.fr, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2023-03-23 12:35:27,491) - Loading pickle: /home/ychi/sklearn_env/mnist_logs/1938801_submitted.pkl
*** Starting from stage 'Data Loading' ***
*** Entering stage 'Data Loading' ***
Loaded data, shuffle and split in 35.5s
*** Entering stage 'Data Cleaning' ***
Scaled the data took 10s
*** Entering stage 'Model Training' ***
Training took 2s
Sparsity with L1 penalty: 78.88%
Test score with L1 penalty: 0.8222
submitit INFO (2023-03-23 12:37:16,022) - Job completed successfully
submitit INFO (2023-03-23 12:37:16,024) - Exitting after successful completion

-------------------------------------------------
Sparsity with L1 penalty: 78.88%

As you can see in the example above, the original job (job_id=1938801) was checkpointed at the stage 'Data Loading'. In the automatically resubmitted job (job_id=1938802), the stage '0' is skipped since it has been done in the original job. The resubmitted job restarted directly from the stage 'Date Loading', finished the training and give us back a final score.

Under the hood, a DelayedSubmission class is used to contain the callable function for checkpointing. In the OAR plugin, this class calls trickily the original job's pickled callable function, and pickle the output of the callable function into the original job's result. It makes it as similar as possible to the Slurm's same job requeue mecanisme.

However, don't forget that OAR resubmits always another job after the checkpointing. Your original submission bash file will automatically be called for the resubmission by OAR. Submitit will then write the stdout and stderr files in resubmitted_job_id_log.out and resubmitted_job_id_log.err files.

Job array with Submitit

The job array submission is supported through the executor.map_array method.

It is preferred in Submitit to use the Job Array functionality for launching n times the same or similar jobs at once, because:

  • it can submit all jobs in only 1 call to OAR (avoids flooding it).
  • it is faster than submitting all jobs independently.

Here is a Python script example which allows to submit 4 additions at once:

import submitit

def add(a, b):
    return a + b

a = [1, 2, 3, 4]
b = [10, 20, 30, 40]
executor = submitit.AutoExecutor(folder="log_test")
jobs = executor.map_array(add, a, b)
# Iterate over the list of jobs and check their results, stdout and stderr
for job in jobs:
    print("Job: ", job.job_id, " result: ", job.result())
    print("Job: ", job.job_id, " stdout:\n", job.stdout())
    if job.stderr():
        print("Job: ", job.job_id, " stderr: ", job.stderr())

The example script needs to be launched on frontend as follow:

Terminal.png fontend.site:
python3 this-script.py

The output is as follow:

Job:  1948179  result:  11
Job:  1948179  stdout:
 submitit INFO (2023-05-26 11:10:07,374) - Starting with JobEnvironment(job_id=1948178_1, hostname=chetemi-13.lille.grid5000.fr, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2023-05-26 11:10:07,374) - Loading pickle: /home/ychi/submitit/log_test/1948179_submitted.pkl
submitit INFO (2023-05-26 11:10:07,375) - Job completed successfully
submitit INFO (2023-05-26 11:10:07,375) - Exiting after successful completion

Job:  1948180  result:  22
Job:  1948180  stdout:
 submitit INFO (2023-05-26 11:10:06,354) - Starting with JobEnvironment(job_id=1948178_2, hostname=chifflet-6.lille.grid5000.fr, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2023-05-26 11:10:06,354) - Loading pickle: /home/ychi/submitit/log_test/1948180_submitted.pkl
submitit INFO (2023-05-26 11:10:06,355) - Job completed successfully
submitit INFO (2023-05-26 11:10:06,356) - Exiting after successful completion

Job:  1948178  result:  33
Job:  1948178  stdout:
 submitit INFO (2023-05-26 11:10:07,136) - Starting with JobEnvironment(job_id=1948178_0, hostname=chetemi-8.lille.grid5000.fr, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2023-05-26 11:10:07,136) - Loading pickle: /home/ychi/submitit/log_test/1948178_submitted.pkl
submitit INFO (2023-05-26 11:10:07,137) - Job completed successfully
submitit INFO (2023-05-26 11:10:07,138) - Exiting after successful completion

Job:  1948181  result:  44
Job:  1948181  stdout:
 submitit INFO (2023-05-26 11:10:06,472) - Starting with JobEnvironment(job_id=1948178_3, hostname=chifflet-2.lille.grid5000.fr, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2023-05-26 11:10:06,472) - Loading pickle: /home/ychi/submitit/log_test/1948181_submitted.pkl
submitit INFO (2023-05-26 11:10:06,473) - Job completed successfully
submitit INFO (2023-05-26 11:10:06,474) - Exiting after successful completion

Under the hood, each job of the array is an independent OAR job with its own stdout log file jobId_log.out, stderr log file jobId_log.err, task file jobId_submitted.pkl and output file jobId_result.pkl. In comparison to standard jobs, job arrays share one submission file firstJobId_submission.sh.

Note that unlike the SlurmExecutor (and the slurm_array_parallelism option), the OARExecutor does not allow limiting the number of jobs executed in parallel with this option.

Note also that one pickle file is created for each job of an array. If you have big object in your functions (like a full pytorch model) you should serialize it once and only pass its path to the submitted function.¹

¹: https://github.com/facebookincubator/submitit/blob/main/docs/examples.md#job-arrays


Current status of the OAR plugin

Despite the differences between OAR and Slurm-based clusters,

the first version, the supported and not supported parameters are listed in the table below. The not supported functionalities are the tasks notion of Slurm, the memory management of the job, the job array and the asynchronous job supports.