Template:Site description

From Grid5000
Revision as of 10:59, 14 November 2016 by Rpottier (talk | contribs)
Jump to navigation Jump to search

Specific informations of {{{1}}}'s site:

  • [[{{{1}}}:Hardware|Hardware]]
  • [[{{{1}}}:Network|Network]]
  • [[{{{1}}}:Storage|Storage]]
  • [[{{{1}}}:External access|External access]]
  • [[{{{1}}}:People|People]]
  • Administration

Direct access to resources for {{{1}}}'s site:

Shortcuts to global tools and informations:

Latest updated publications Five random publications that benefited from Grid'5000 (at least 2921 overall):

  • Maxime Agusti, Eddy Caron, Benjamin Fichel, Laurent Lefèvre, Olivier Nicol, et al.. PowerHeat: A non-intrusive approach for estimating the power consumption of bare metal water-cooled servers. 2024 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics, Aug 2024, Copenhagen, Denmark. pp.1-7. hal-04662683 view on HAL pdf
  • Clément Courageux-Sudan. End-to-end simulation of the energy consumption of Fog infrastructures and their applications. Networking and Internet Architecture cs.NI. Université de Rennes, 2023. English. NNT : 2023URENE008. tel-04496167 view on HAL pdf
  • Antoine Omond, Hélène Coullon, Issam Raïs, Otto Anshus. Leveraging Relay Nodes to Deploy and Update Services in a CPS with Sleeping Nodes. CPSCom 2023: 16th IEEE International Conference on Cyber, Physical and Social Computing, Dec 2023, Danzhou, China. pp.1-8, 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00102. hal-04372320 view on HAL pdf
  • Chaima Zoghlami, Rahim Kacimi, Riadh Dhaou. Leveraging RL for Efficient Collection of Perception Messages in Vehicular Networks. Global Information Infrastructure and Networking Symposium (GIIS 2024), Feb 2024, Dubai, United Arab Emirates. à paraître. hal-04408979 view on HAL pdf
  • Rahma Hellali, Zaineb Chelly Dagdia, Karine Zeitouni. A Multi-Objective Multi-Agent Interactive Deep Reinforcement Learning Approach for Feature Selection. International conference on neural information processing, Dec 2024, Auckland (Nouvelle Zelande), New Zealand. pp.15. hal-04723314 view on HAL pdf

Latest updated experiments {{#experiments: 5|{{{1}}}}}

{{{misc}}}